Department of Computer Science and Mathematics LEBANESE AMERICAN UNIVERSITY

Calculus IV Exam I Spring 2013 (March 13, 2013)

Col. Di suo

Name: ZOUM LOW-Circle your section: Dr M. Hamdan

Dr L. Issa

Question Number	Grade
1.8%	
2.8%	
3.8%	
4. 12%	
5, 12%	
6. 10%	
7. 10%	
8.16%	
9.16%	
Total	

1. (8%) What is the largest value that the directional derivative of $f(x,y) = xy^2$ can have at (1,1,1)?

longest Du & is [Th]

2. (8%) Find the equation of the plane tangent to $x^2 - y - 5z = 0$ at the point (2, -1, 1)

$$4(x-2)-(y+1)-5(2-1)=0.$$

3. (8%) Use implicit differentiation to find $\frac{dy}{dx}$ at the point (-1,1) for $4x - \frac{4}{y} + 6x^2y^2 = 0$

4. (12%) If f(x,y,z) is differentiable, x=r-s, y=s-t, and z=t-r, show that $f_r+f_t+f_s=0$

2

- 5. (12%) At the point (1,2), the function f(x,y) has derivative equal to 2 in the direction toward the point (2,2), and derivative -2 in the direction toward the point (1,1).
- (a) Find $f_x(1,2)$ and $f_y(1,2)$

(b) Find the derivative of f at (1,2) in the direction toward the point (4,6)

6. (10%) Approximate the value: $\sqrt{(4.9)+4}+2.02$ using linearization. Hint: start with the function: $f(x,y)=\sqrt{x+4}+y$ and take it form there.

$$\Delta \times = 4.9 - 5 = -0.1$$

 $\Delta y = 2.02 - 2 = 0.02$
 $\delta(x_1y) = \sqrt{4.9 + 4} + 2.02 \approx \delta(5,2) + \delta_x(5,2) + \Delta x$
 $\delta(x_1y) = \sqrt{4.9 + 4} + 2.02 \approx \delta(5,2) + \Delta x$

$$\begin{cases} \{(5,2)^{2} & \sqrt{5+6} \\ = \frac{1}{2\sqrt{5+6}} \\ \{(5,1)^{2} & \sqrt{5+6} \\ = \frac{1}{2} \end{cases} = \frac{1}{2} \end{cases}$$

$$\begin{cases} \{(5,2)^{2} & \sqrt{5+6} \\ = \frac{1}{2} \end{cases} = \frac{1}{2} \end{cases}$$

$$\begin{cases} \{(5,2)^{2} & \sqrt{5+6} \\ = \frac{1}{2} \end{cases} = \frac{1}{2} \end{cases}$$

7. (10%) You plan to calculate the volume inside a cylindrical pipe that is about 1 m in diameter and 2 km in length. With which measures should you be more careful? (that is, to which dimension is the sensitivity to change higher)? explain

- œ (16%) A closed rectangular box of dimensions x, y, and z should have volume 100cm^3 . The cost of the material used in the box is 10 cents/cm^2 (that is surface area) for the top and the bottom, and 12 cents/cm^2 for the front and back sides.
- (a) Write the expression of the function f(x, y, z) for the total cost in terms of the dimensions x, y

(b) Deduce the dimensions x, y, and z that minimize the total cost of material. (Use Lagrange. Just set up the system. Don't evaluate the final answer.)

the constraint
$$8(x_1, y_1)$$
 subject

9. (16%) Find the absolute extrema of $f(x,y) = z = x^2 - y^2 - 2x + 4y$ over the triangular plate bounded by the x-axis, the line y = x + 2, and on the right by x = 2?

$$6xy^{-2}$$
 $6xy^{-2}$
 $6xy^{-2}$
 $6yy^{-2}$
 $8(2)$
 $8(2)$
 $8(2)$

		,